Optimal parameter estimation in semi-empirical tire models
نویسندگان
چکیده
منابع مشابه
Parameter Estimation in Distributed Systems: Optimal Design
We formulate a very general optimal design problem for the selection of best states to observe and optimal sampling times and locations (i.e., selections of what, when, and where to observe) for parameter estimation or inverse problems involving complex nonlinear partial differential systems. A theoretical framework along with a detailed iterative algorithm for implementation of the resulting m...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملParameter estimation for neuron models
Methods for estimating parameters of the Hindmarsh-Rose (HR) neuron model from a single time series are investigated. Two approaches, (1) synchronization based parameter estimation and (2) adaptive observer, are presented. Both methods are applied to membrane potential data recorded from a single lateral pyloric neuron synaptically isolated from other neurons.
متن کاملParameter estimation of diffusion models ∗
Parameter estimation problems of diffusion models are discussed. The problems of maximum likelihood estimation and model selections from continuous observations are illustrated through diffusion growth model which generalizes some classical ones.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
سال: 2018
ISSN: 0954-4070,2041-2991
DOI: 10.1177/0954407018779851